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Visualizing and Interacting with
Kernelized Data

A. Barbosa, F. V. Paulovich, A. Paiva, S. Goldenstein,F. Petronetto, L. G. Nonato

Abstract—Kernel-based methods have experienced a substantial progress in the last years, tuning out an essential mechanism for
data classification, clustering and pattern recognition. The effectiveness of kernel-based techniques, though, depends largely on the
capability of the underlying kernel to properly embed data in the feature space associated to the kernel. However, visualizing how a
kernel embeds the data in a feature space is not so straightforward, as the embedding map and the feature space are implicitly defined
by the kernel. In this work, we present a novel technique to visualize the action of a kernel, that is, how the kernel embeds data into a
high-dimensional feature space. The proposed methodology relies on a solid mathematical formulation to map kernelized data onto a
visual space. Our approach is faster and more accurate than most existing methods while still allowing interactive manipulation of the
projection layout, a game-changing trait that other kernel-based projection techniques do not have.

Index Terms—Multidimensional Projection, Visualization, Kernel Methods

1 INTRODUCTION

ERNEL methods have emerged as a versatile mecha-
Knism to handle generic data. The growing interest in
kernels is mainly motivated by the positive impact they
have in important applications such as data clustering and
classification. Intuitively, a kernel function corresponds to
a dot product in a feature space, that is, given a positive
definite kernel k(-,-), there exits a map that embeds the
data into a feature space where the dot product between
instances is given by the kernel k [1]. Typically the em-
bedding map and the feature space associated to a kernel
are defined only implicitly, making difficult to understand
how a kernel embeds the data into the underlying feature
space. A clear understanding of the mapping performed by
a kernel makes easier the choice and the design of kernels as
well as the fine-tuning of kernel parameters, thus improving
the effectiveness of kernels in specific applications.

Despite the relevance, little has been done towards de-
veloping computational tools to assist users in understand-
ing the behavior of kernels. Even more scarce are methods
that rely on visualization resources to perform such task.
Techniques such as multidimensional scaling [2] can be used
to map kernelized data (data whose similarity is given by a
kernel function) to a visual space, but their high computa-
tional cost and lack of flexibility as to user interaction have
hampered their use as visualization tool to investigate the
action of kernels. Multidimensional projection (MP) meth-
ods [3] provide more user-friendly mechanisms, but most
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MP methods require data embedded in a Cartesian space,
which prevents their use with kernel functions. The few MP
methods able to handle kernelized data are computationally
intensive, impairing user experience.

This work presents the Kernel-based Linear Projection
(Kelp), a novel technique able to map data from a kernel
defined feature space to a visual space. Kelp relies on a
solid mathematical formulation, it has low computational
cost and enables interactive resources for users dynamically
interact with the resulting layout. These desirable properties
render Kelp an attractive visualization tool in different
scenarios. In fact, besides providing a comprehensive set
of experiments that confirm the effectiveness of Kelp as
a projection technique, we show how Kelp can support
visualization tools devoted to handle kernelized data. More
specifically, we show how applications such as data clas-
sification and image segmentation can benefit from Kelp.
Moreover, we derive a kernel-based version of differential
coordinates which allows for analyzing how neighborhood
structures change due to the action of a kernel. As far
as we know, the proposed mechanism is one of the first
visualization tools devoted to analyze how a kernel embeds
data onto a feature space.

In summary, the main contributions of this work are:

e A novel kernel-based multidimensional projection
technique called Kelp, which relies on a solid mathe-
matical formulation to provide a computational effi-
cient visualization to for analyzing kernelized data.

e The use of Kelp as a visualization tool to assist
kernel-based applications such as data classification
and image segmentation.

e The combination of kernel differential coordinates (also
proposed in this work) with Kelp towards under-
standing how kernel functions affect neighborhood
structures during the embedding process. This novel
mechanism is a step forward in enabling visualiza-
tion resources for users comprehend the behavior of
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kernels.

2 RELATED WORK

In order to better contextualize our contribution, we provide
an overview of multidimensional scaling and multidimen-
sional projection methods in the context of visualization.

Multidimensional scaling methods (MDS) have long
been investigated by the machine learning community as
a tool to perform dimensionality reduction. Typically, these
methods consider only distance information (dissimilarity
measure) between instances to embed data into a Cartesian
space. Distinct classes of methods have been proposed to
perform the embedding, being spectral decomposition a
classical approach that computes embedding coordinates
from the eigenvectors of a transformed version of the
dissimilarity matrix (symmetric matrix containing the dis-
similarity between each pair of instances) [4], [5]. Spectral
methods are computationally intensive, so they do not
scale well to large data sets. In order to alleviate the com-
putation burden, techniques such as Landmark MDS [6],
Progressive MDS [7], Fastmap [8] and among others [9],
[10], [11] perform the spectral decomposition only from
a subset of samples, using interpolation-like schemes to
map the whole data set. Another common characteristic of
spectral decomposition methods is the lack of flexibility as
to user interaction, which hampers the effective use of those
methods in visualization-oriented applications.

First proposed by Kruskal [2], techniques based on
nonlinear-optimization comprise other important class of
MDS methods, which accomplishes the embedding into a
feature space by minimizing an energy function, usually
called stress function. Those methods are also computa-
tionally expensive, even when using efficient numerical
solvers [12]. The approach proposed by Chalmers [13] and
its variants [14], [15] also rely on subset of samples to
reduce the computational burden. GPU implementation has
been exploited as an alternative to alleviate computational
effort [16], [17], however, this class of methods is still
prohibitive for interactive applications that deal with large
data sets. Milder computational times can be obtained with
the technique proposed by Pekalska et al. [18], which first
maps a subset of samples to the visual space by minimizing
a stress function and then places the remaining instances
using a linear mapping built from the first mapping step.

Multidimensional projection (MP) is a particular class
of multidimensional scaling methods where the embedding
space is two or three dimensional, targeting mainly data vi-
sualization. One of the main characteristics of MP methods
is to enable resources that allow users to interact with the
projection layout. Least Squares Projection [19] (LSP) and
its variant PLP [20] are typical examples of MP methods.
LSP employs a two-step procedure that first place a subset
of sample points onto the visual space and then projects
the remaining instances through a Laplacian mapping. The
user can steer the projection by manipulating the sample
points. Although flexible and capable of projecting data
based only on similarity information, LSP does not scale
well, as the cost to solve the Laplace systems may become
prohibitive for large data sets. The PLP method uses a
force-based scheme to place the subset of samples in the
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visual space. The remaining data instances are projected
using local Laplacian maps, which are built from disjoint
local neighborhood graphs. MP methods such as PLMP [21]
and LAMP [3] can handle massive data sets while still
ensuring interactive manipulation of the layout. However,
PLMP and LAMP rely on Cartesian coordinates of the data
to perform the projection onto the visual space, rendering
them inadequate for applications where only the similarity
between instances is available, as the case of kernelized data.
In summary, most methods able to map data from
similarity information either are not flexible enough as to
user interaction or do not scale properly to large data sets.
Existing interactive and computationally efficient methods
can only handle data embedded in a Cartesian space, what
considerably restricts their applicability. The Kelp method
proposed in this paper fills this gap, since it is compu-
tationally efficient, enables interactive manipulation of the
projection layouts and it is able to handle kernelized data.

3 KERNEL MAPPING

Similarly to most MP methods, the proposed kernel-based
projection technique comprises two main steps. In the first
step, a subset of samples is mapped to the visual space
using an energy minimization scheme. Sample points can
also be interactively laid down onto the visual space. The
samples may be picked out randomly as proposed in [21]
or chosen by the user to better reflect her/his knowledge
about the data. Since the subset of samples is typically
small (our method is stable even when dealing with a fairly
small number of samples), it can be quickly mapped to the
visual space even when using a costly energy minimization
approach such as the Force Scheme [22], which is the method
employed in our implementation. The whole data set is
mapped to the visual space taken as basis the position of
sample points and the similarity between instances given
by the kernel function. Before describing the mathematical
construction that supports our approach, we provide some
basic concepts important in the present context.

3.1 Mathematical Preliminaries

Let X = {z1,22,...,2,} be a set of data instances and
k : X xX — R be a real function that assigns a similarity
measure k(x;,2;) to each pair of instances z; and x; in X.
The function k is called a (positive definite) kernel if the
matrix K with entries k;; = k(z;, z;) is positive definite.
Given a kernel as defined above it is possible to construct
a map ¢ from X to a (high-dimensional) feature space H
such that
k(ziyz) = o) ¢(x;), 1)

where ¢(z;)" ¢(x;) is a dot product between ¢(z;) and
¢(z;). Equation (1) shows that a kernel corresponds to a
dot product in a feature space H (see [1] for a proof), thus
the matrix with entries k;; is a Gram matrix.

Assuming for the moment that the image of X by
the mapping ¢ is centered in the feature space, that is,
LS, ¢(x;) = 0, the covariance matrix of the mapped
data is given by:

C=— Z d(zi)d(z)" ()
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where ¢(x;)" is the transpose of ¢(z;).

A useful property for our formulation is that the eigen-
vectors u; of C can be written as a linear combination
of the embedded instances with coefficients given by the
eigenvectors of K (see appendix), more precisely,

m

u; = Zaij¢(l’j) ) 3)
=1

where the vectors a; = (a;1, a2, -+ ,a;,)' are eigenvectors
of K (see appendix for a proof).

Note that when dealing with kernels, the dimension of
the feature space is typically much larger than the number
of instances embedded in such space, that is, m < d. In this
scenario, the matrix C' has rank at most equals to m, thus
each eigenvector associated to a nonzero eigenvalue of C
corresponds to an eigenvector of K.

3.2 The Kelp Method

Our kernel-based multidimensional projection method re-
lies on a subset of samples to perform the mapping.
Let X; € X, X, = {2s,,%s,,...,2%s,} be a subset of
samples from X (n accounts for the number of samples
while m is the total number of instances in X) and Y, =
{¥s1,¥s2s---,¥s, | be the image of X, in the visual space
(Y, results from the Force Scheme applied to X;). Lets also
denote by K the Gram matrix built from X, that is, the
entries in K are given by k(zs,, zs,).

Suppose that the embedding map ¢ associated to the
kernel £ is known, our goal is to find a linear mapping
M : H — R? (R? being the visual space) such that

M¢(zs,) =Y, - (4)

The linear transformation A should map each sample

¢(zs,) to ys, in the visual space. The rationale behind the

construction above is that, due to linearity, the neighbor-

hood structure of each ¢(z,,) should be preserved by M.
Equation (4) can be written in matrix form as

M® =Y, )

where

O = d)(l’sl) ¢(xsn) , Y= |ys - ¥s,
have dimensions h x n and 2 X n respectively, and h is the
dimension of the span{¢(zs,), ..., (x5, )}

Multiplying both sides of Equation (5) by ®" we obtain

MO =Y — nMC, =Y, (6)

where Cj is the covariance matrix as defined in Equation (2)
but computed from the subset of samples X,. Since C; is
symmetric it can be decomposed as Cy = UDU', where
the columns of U are the orthonormal eigenvectors u; of C;
and D is a diagonal matrix containing the eigenvalues \;
as diagonal elements. The pseudo inverse of C is given by
C;t =UDUT,being D~ the inverse of nonzero diagonal
elements in D. Applying the pseudo inverse in Equation (6)
results in:

1 1 -
M=-Y3Cf ==Y (UD—lUT) .
n n

The projection of any instance ¢(z) is so given by
Mo(z) = lY<1>TU1~)*1UT¢>(gc). %)
n

Let A be the matrix with columns formed by eigenvectors
a; of K (see Equation 3) and, making an abuse of notation,
let U be now the matrix containing only the eigenvectors of
(s associated to nonzero eigenvalues. From Equation (3) we
can derive

U=0A = dU=0"0A = dU=KA (8
and
UTp(x) = (2A) d(x) = AT@Tg(2) = ATky . (9)

where k, = (k(z,zs,), k(z,25,),..., k(z,z5,))".

Using the fact that the eigenvalues of C; and K relate
to each other according to v; = n); (see appendix), where
«; are the eigenvalues of K, and using Equations (8) and
(9) in Equation (7) we have

Mep(z) = YK,AI 1Ak, , (10)

where I'"! is the diagonal matrix with elements 1/7;.

Notice that the term on the right in Equation (10) in-
volves only known quantities. In fact, Y is the matrix con-
taining the coordinates of the samples in the visual space,
K is the Gram matrix built from X, matrix A has columns
given by eigenvectors of K, diagonal elements in I' are
the inverse of the eigenvalues of K, and the vector k, is
made up of kernel values between x and x,, where z is
an instance to be projected. Therefore, given the samples,
their image in the visual space, and the kernel k(z,zs,),
we project any data instance z; from X to the visual space
by simply evaluating Equation (10) in = z;. In fact,
besides Y5, only &(-, ) need to be known to accomplish the
projection of X.

3.3 Centralizing Data in Feature Space

In the previous subsection we assumed the samples X,
centered around the origin (zero mean) in the feature space
H. Therefore, we have to center the matrix K and the vector
k, before starting the projection process. The procedure to
center a Gram matrix is well known from machine learning
literature [1] and consists in applying the following trans-
formation to K:

Ks :Ks*]]-nKs*Ks]]-n*'“]]-nKs]]-nv (11)

where 1,, is the square matrix with all entries equal to 1/n
(K s will be the matrix used in the projection process).

An important aspect in our approach is that the kernel
have to be evaluated only between instances and samples,
that is, only k(x;,zs,) have to be known, what reduces
considerably the amount of information to be computed.
Nevertheless, the full Gram matrix have to be known to
faithfully center each vector k;, hampering the previously
stated advantage of only evaluate k(z;, z; ). We get around
that issue by centering k, as to K rather than consider the
full Gram matrix K. Although such centering mechanism is
only an approximation, it worked well in all tests we have
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carried out. In mathematical terms, the centralization of k,
is given by:

k, =k, — K1, — 1,k + 1,K,1, ; (12)
where 1, is a vector with all entries equal to 1/n. The
mathematical justification for Equation (12) can be found

in the appendix.

3.4 Projecting the Samples

As already mentioned at the beginning of this section,
the subset of samples is mapped to the visual space us-
ing the Force Scheme [22]. Since the Force Scheme has
been designed to operate on distances rather than sim-
ilarity measures, we do better convert the kernel infor-
mation into a distance function. In mathematical terms,
a metric can be defined from a dot product in H by
dlz,y) = (r—y)"(x —y), where z, y € H and the
dot product is the one from the feature space. Expanding
the dot product on the right and using the embedding ¢
and the associate kernel k, we get:

d(d(xi), p(x)) = Vk(zi, 3:) — 2k(i, 25) + k(zj,2;).  (13)

The distance function derived from the kernel informa-
tion is the metric to be preserved by the Force Scheme when
arranging the instances Yy in the visual space. Since M is
a linear transformation it maps the origin of the feature
space to the origin of the visual space. Therefore, we also
centralize Y, after applying the Force Scheme such that the
centroid of Y, coincides with the origin of the visual space.

3.5 Computational Aspects

The mathematical construction in Subsection 3.2 assumes
that the eigenvectors u; of C' are orthogonal and unitary.
Using Equation (3), we have

n
-
l=u; u;= Z ai aip $(x5,) G(25,) =a] Ksa;=7;a] a;
l,p=1

that is, the eigenvectors a; of K as defined in Equation (3)
are orthogonal but they are not normalized. However, nu-
merical libraries typically output eigenvectors with norm
equals to one. In order to ensure that ||u;lls = 1, we
must multiply the normalized eigenvectors of K (given by
numerical libraries) by 1/,/7;. Algorithm 1 summarizes the
steps to project each instance ¢(x;).

The most costly part of Algorithm 1 is the spectral
decomposition of matrix K,, whose complexity is O(n?),
where n is the number of samples. Although costly, the
spectral decomposition is computed only once and requires
few samples.

4 [EVALUATION AND COMPARISONS

Results presented in this section were produced in an
Intel®¥ Core™ i7 CPU 920 2.66GHz, with 8GB of RAM.
The proposed projection method, Kelp, is implemented in
Java using the ]JBlas numerical library [23] to perform the
eigendecomposition of K. We use a Gaussian kernel to
generate most of the results, we make clear when other
kernels are used. The subset of samples used to steer the
projection has been chosen randomly and the number of

Algorithm 1 The Kelp’s algorithm.

Require: Data set X and samples X

1: Project X, wusing the Force Scheme with dis-
tances defined in Eq. (13). Compute the mean
y %Z?:l ys, and set the matrix Y as

y =
7ysn - Y}

Y = [y81 7?7}’82 7?7

2: Compute the Gram matrix from X, and centralize it
using Eq. (11), obtaining K

3: Compute the eigenvectors aj,as, - ,a, and corre-

sponding eigenvalues 71, y2, -, ¥n of K
4: Create the matrix A, x, = {\‘/‘}Tl, v AR ;j/;}

—1
pPXp

with entries I';;" = -

i

5: Create the diagonal matrix I

6: Compute the matrix P =Y K, AT~ AT

7: for each x € X do
8.  Compute k, = (k(z,zs),
centralize it using Eq. (12)

.oy k(z,25,))" and

9:  Compute the mappingy = Pk,
10: end for

samples is set as n = +/m, where m is the number of
instances in the data set. Some experiments make use of
a different choice of samples, which will be clear in the
context.

The quality of Kelp is attested through two different sets
of comparisons. The first set assesses Kelp’s performance
as to accuracy and computational time. Kelp is compared
against 5 existing techniques employing 8 data sets which
vary considerably in terms of size and dimensionality (see
Table 1). Techniques employed in the comparisons were
chosen because they share similarities with Kelp, namely,
they also rely on a subset of samples to perform the pro-
jection and can deal with kernelized data. Moreover, those
techniques are well known by their good performance in
terms of accuracy and/or computational time, ensuring that
the provided comparisons are fair and encompass state-
of-art projection methods. More specifically, Fastmap [8],
Hybrid [14], Landmark MDS [6], Pekalska [18], and PLP [20]
are methods that present a good performance in terms
of stress/time. Similarly to Kelp, the methods PLP and
Pekalska allows for interactive manipulation of samples in
the visual space.

TABLE 1
Data sets used in the comparisons, from left to right the columns
correspond to the data set name, size, dimension (number of
attributes), and source.

[ Name | Size [ Dim | Source |
wdbc 569 30 24]
diabetes 768 8 [24]
segmentation 2,100 19 [24]
us-counties 3,028 14 [25]
Wine 1,898 11 [24]
letter rcn 20,000 16 [24]
mammals 50,000 72 [24]
viscontest 200,000 10 [26]




JOURNAL OF IATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014

0.5 . . : : ; " 10°

0.4 ¢

0.2
0.1}
|

0.0

- -
-}
Time Esecor;ds) ]

) ) & = & 2
& 3 ) &

L B
-

Fig. 1. Box plot of stress and time for data sets in Table 1.

Accuracy has been measured based on the stress function

; (dij—di;)*

given by Zij e

instances x; and z; l(]original data) is obtained by converting

kernel values k(x;,z;) into distances, as shown in Equa-

tion (13). Euclidean distance in the visual space is used to
evaluate d;;.

The blue box plots in Figure 1 show the range of stress
obtained by Kelp and the other techniques when mapping
the data sets in Table 1. One can easily see that Kelp is one
of the most accurate technique, being comparable to highly
precise methods such as Landmark MDS and Pekalska.
Box plots in yellow show that Kelp also performs well in
terms of computational times, being comparable to Fastmap,
which is well known for its computational efficiency. Notice
that Kelp is almost one order of magnitude faster than
Landmark MDS and Pekalska, the two methods comparable
to Kelp in terms of accuracy.

The original-distance x projected-distance scatter plots pre-
sented in Figure 2 allow for assessing Kelp’s accuracy visu-
ally. Notice that Kelp gives rise to nearly 45° diagonal layout
in almost all test cases, attesting that neighborhoods are well
preserved in the visual space. The same is not true for other
projection methods such as Hybrid and PLP, which result in
a spread distribution around the diagonal direction.

Data sets used in the comparisons above are endowed
with instances embedded in a vector space, what allows
for employing highly accurate techniques such as LAMP [3]
to project the data. Therefore, one could surmise that the
proposed kernel-based method is useless for this kind of
data. Figure 3 contradicts such reasoning, showing that the
projection resulting from a kernel has better defined clusters
than the projection generated by mapping the data directly
from its intrinsic feature space. Figures 3(a) and 3(b) show
the projections resulting from applying Kelp and LAMP to
map the Segmentation data (see Table 1) and Figures 3(c)
and 3(d) the results of applying Kelp and LAMP to a data
set with 574 scientific articles collected on three different
subjects [19]. Projections in Figures 3(a) and 3(c) have been
produced by kernelizing the original data as

k(z;,z;) = exp(—dfj/202) ,

, where the distance d;; between

where d;; is the Euclidean distance d(z;, z;) computed from
the corresponding bag-of-words and o is the average vari-
ance of the data. Figures 3(b) and 3(d) show the projection
of the same data sets but using LAMP (the bag-of-words

5

of each instance is used to perform the projection). Notice
that the layout generated by Kelp is less tangled, showing
up clusters and similar instances. The better quality of the
layout resulting from Kelp is quantitatively attested by the
silhouette coefficient S, which assumes larger values in the
layouts produced by Kelp. The silhouette coefficient accounts
for both the cohesion and separation between grouped
instances and it is computed as § = = >, %, where
a; is the average distance between y; (the image of z; in the
visual space) and all other instances in the same class as y;
and b; is the minimum distance between y; and all other
instances in the other groups. The silhouette ranges in the
interval [—1, 1] and the larger the value of S the better is the
cohesion and separation of the data.

(c) Kelp S = 0.599 (d) LAMP S = 0.411

Fig. 3. Improving the cohesion and separation of groups on the final
projection using a kernel. The silhouette (S) is larger for projections
created by kernel-based technique than using an Euclidean distance-
based technique such as LAMP.

Kelp’s sensitivity with respect to user intervention is
analyzed in Figure 4. Figure 4(a) shows the projection pro-
duced by Kelp when samples are arranged in the visual
space by the Force Scheme. The top right inset depicts the
position of the samples after applying the Force Scheme to
a subset of randomly selected samples. Figures 4(b), 4(c),
and 4(d) show the layouts produced by Kelp, PLMP, and
LAMP respectively, after user intervention, that is, user has
manually grouped samples accordingly to their classes so as
to better define clusters in the visual space (see the top right
insets). Notice that the layout resulting from Kelp has the
highest silhouette value, even superior to LAMP, which is
known to be quite sensitive to user intervention. Moreover,
PLMP and LAMP require data embedded in a Cartesian
space, thus they can not be directly employed in kernelized
data.

Figure 5 shows the stability of Kelp as to the number
of samples used to drive the projection. Notice that stress
stabilize when 5% of the data is used as samples. The jagged
behavior of the curves is due to the random selection of
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Fig. 4. Comparing Kelp’s sensitivity as to user interaction. The upper
right insets show the position of the samples.

samples that, as already reported in the literature [21], can
affect the quality of the projection. However, in those tests
the amplitude of the oscillation is quite small, close to 0.05.

We further analyze Kelp in terms of “tears” and “false

0.35

0.3

0.25

0.2

0.15

Stress

0.1

0.05

0%

5%

10% 15%
Percentage Instances

20% 25%

= wdbc

- diabetes
segmentation

== Us-counties

— NN E

Fig. 5. Varying the sample size: stress stabilize nearly 5% of the in-
stances used as samples.

neighbors”. As proposed in [27], we use a color code to rep-
resent distortions: purple indicating false neighbors, green
indicating tears, black indicating that a point is a tear and a
false neighbor simultaneously, and white corresponding to
no distortion. Notice in Figure 6(b) that the green regions
surrounding the clusters indicates that tears are happening,
but false neighbors are only observed for points placed
among the clusters. As pointed out by in [27], this is the
best on can expected, since the projection is not creating
misleading neighbors within clusters.

5 APPLICATIONS

In this section we illustrate the usefulness of Kelp in three
distinct applications. The first application, motivated by
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(a) Kelp projection (b) CheckViz Analysis

Fig. 6. Verifying the projection quality with CheckViz methodology: (a)
projection of an artificial data set with 150 instances and 4 dimen-
sions [28]; (b) purple points indicate false neighbors and green points
tears. The circle o indicates the size of the neighborhoods considered
in each point.

the issue discussed in Section 1, employs Kelp as a tool
to assist users in understanding the behavior of a kernel.
More specifically, we rely on Kelp to build a tool that allows
for visually analyzing how a kernel affects neighborhood
relations. The second application exploits the interactive
mechanism enabled by Kelp to assist Support Vector Ma-
chine data classification tasks. The third application shows
that a kernel based visualization process can greatly benefit
from a visualization assisted mechanism such as Kelp.

5.1 Kernel Induced Neighborhood Changes

As motivated in Section 1, figuring out how a kernel affects
neighborhood structures is of paramount importance for
the proper choice, design, and tuning of kernels in specific
applications. The visualization tool described in this section
is a first attempt in visualizing the behavior of kernels and
assisting users in kernel-based applications.

Our approach relies on a metric to compare neighbor-
hood structures defined in the original Cartesian space
against their counterpart in the feature space induced
by a kernel. The metric is defined as follows: let X =
{x1,22,...,2m} be a set of instances in a Cartesian space
(we will use the same symbol x; to represent the data and
its vector representation) and §; = z; — ##N > jen, Tj be
the differential coordinate of x;, where NN; accounts for the
indexes of the k-nearest neighbors of x; and #N; is the
cardinality of N;. The norm ||J;| is a measure of how far
x; is from the centroid of its neighbors. Let now ¢(x;) be
the image of z; in a feature space induced by a kernel k.
The norm of the differential coordinate ¢4, of ¢; = ¢(x;) in

the feature space is given by ||04, || = \/d4, 04, with

.
1 1
P g X (b gy

H(Stih =
' jEN; L jEN;
2
= k’(x“xb) - T Z k(xi,xj) (14)
#Ni JEN;
1
+ 2 Z k(wj,zs)
(#Ni)? <4

Equation (14) shows that the norm of differential coordi-
nates in feature space can be obtained from kernel values,
making possible to measure how far each instance ¢(z;)
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is from the centroid of its neighbors in the feature space.
Notice that we are always defining neighborhoods in the
Cartesian space, because our goal is to measure how those
neighborhoods are affected by the kernel.

Figures 7(a) and 7(b) show color maps corresponding
to values of ||9;]| and ||d¢, ]| in each instance (artificial data
set generated from [28]) projected to the visual space using
PLMP and Kelp, respectively. The larger the value (red
regions) the bigger is the norm of the differential coordinate
(values are normalized in [0, 1]). We choose PLMP to project
the original data to the visual space because, as Kelp, PLMP
makes use of a single linear transformation to map the
data, thus enabling a fair visual comparison of the resulting
layouts. The color map in Figure 7(c) correspond to values
of ||18:]|/|104,]|, which measures changes in neighborhood
structures when data is embedded in a feature space by
k. Values close to 1 indicate no change, values close to
0 indicate that instances get farther from their neighbors
in a non-symmetric way, and values greater than 1 means
that after applying the kernel the instances become more
centralized with respect to their neighbors. Using a transfer
function as illustrated in Figure 8, we can visualize the re-
gions where neighborhoods are more affected by the kernel.
Figure 7(b) tells us that the Gaussian kernel better position
within cluster instances with respect to their neighbors, that
is, within clusters, a Gaussian kernel tend to place instances
pretty close to the centroid of their neighbors. However,
Figure 7(c) clearly shows that, when analyzing the ratio
between the norm of differential coordinates, red regions
(corresponding values close to zero or greater than one)
also show up within clusters. Since ||dg, || is small within
clusters (Figure 7(b)) and the clusters have not spread out
due to the kernel action, we conclude that the large values
of ||0;]|/]|04, || are due to the Gaussian kernel have grouped
more tightly instances within the clusters while preserv-
ing between cluster neighborhoods. Therefore, as expected,
a Gaussian kernel tends to better define the groups.

Color

10:ll /1106,

Fig. 8. Color transfer function.

The experiment above involving a Gaussian kernel vali-
dates and supports the correctness of our methodology. The
same analysis can be performed with kernels other than
Gaussian, as illustrated in Figure 7(d) and 7(e). Figure 7(d)
depicts ||d4, || when a polynomial kernel given by

k(wi,xj) = (2] 2;)? (15)
is used to map data to a feature space. Polynomial kernels
are less intuitive than Gaussian kernels, thus hampering
their use in practical applications. Using visualization tool,
though, one can see that the polynomial kernel Equation (15)
behaves quite similarly to the Gaussian kernel, avoiding to
push “outliers” closer to clusters while tightening instances
that lie within clusters.
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() |19, || (Kelp-Gaussian) (c)

1641l

(a) 110 (PLMP) 65,1

(Kelp-Gaussian)

(d) (154, || (Kelp-(-,-)?) 154,

Fig. 7. Visualizing how a kernel affects neighborhood structures (artificial data set with 150 instances and 4 dimensions): differential coordinate
magnitudes in a layout generated by PLMP with Euclidean distance (a) and ; Kelp using Gaussian (b) and polynomial kernels (d); Magnitude ratio

in the Kelp-Gaussian (c) and Kelp-polynomial layouts (e).

As one can clearly see, differential coordinates turn out
to be quite effective to visualize neighborhood changes
induced by kernels. It is worth mentioning that, as far as
we know, this is the first time that differential coordinates
is used to measure neighborhood structures in the context
of kernelized data, thus being another contribution of this
work.

5.2 SVM Visualization

We take advantage of the flexibility provided by Kelp in
terms of interactive resources to support data classification
tasks, more precisely, Support Vector Machine classification.
SVM is a linear classifier that operates in feature space
(nonlinear on input space) where the separating hyperplane
maximizes the training margin. Intuitively, instances away
from the margins in feature space are classified with good
degree of confidence while instances laying inside the mar-
gins are more likely to be wrongly classified. Therefore,
the typical mental model of a SVM classifier (assuming
two classes) comprises two planar regions where data can
be classified with certain confidence and a strip bounded
by two straight lines (the margins) defining the region of
uncertainty.

We can exploit the flexibility enabled by Kelp to inter-
actively change the position of sample points in the visual
space to realize the SVM mental model. Figure 9 presents
the projection of the wdbc data set (see Table 1) using a
Gaussian kernel. The same Gaussian was used as kernel
for the SVM. Using the LIBSVM [29] to perform the SVM
classification, we get, for each instance, the probability to
belong to a class. Darker colors in Figure 9 correspond
to instances where SVM has high confidence in terms of
classification while lighter instances correspond to the ones
with low confidence. Notice in Figure 9(a) that it is difficult
to figure out which are the confidence regions when the
Force Scheme is used to place sample points in the visual
space.

However, when the sample points are interactively ar-
ranged so as to distinguish the classes, as depicted in
Figure 9(b), the resulting layout clearly uncovering the usual
SVM mental model, making easier to interpret the behavior
of the classifier. Notice that even the margin where the
classification is dubious clearly shows up when sample
points a properly arranged.

It is important to say that other method devoted to
visualize the output of SVM classifiers [30], [31] assume as

(@) (b)

Fig. 9. Realizing the mental model of a SVM classifier by interactively
arranging sample points in the visual space: (a) initial projection of
classified data and (b) projection after layout manipulation, the black line
shows the region where the interpolated probability is 50%. The upper
right corner image shows the sample points position.

input Cartesian data (kernel is only used in the classifier),
what is not the case with Kelp.

5.3 Kernel-based Image segmentation

User assisted techniques comprise an important class of
image segmentation methods. In this context, most meth-
ods enable interactive resources for users to brush seeds
or regions on the image space, driving the segmentation
process from the brushes [32]. However, interactive image
segmentation methods that operate in the feature space
are not so common, although recent works have shown
the advantage of interacting directly on feature to improve
the performance of tasks such as image coloring and re-
trieval [33], [34].

In the following we show how Kelp can be used to
support an interactive image segmentation application that
operates directly in feature spaces. More specifically, we
build upon bilateral filtering to define a kernel and use Kelp
to enable interactive resources for users brush regions in the
feature space induced by the kernel.

Let I be an input image and Z its filtered counterpart
generated by the bilateral filter:

1
L= > 1 Go (I, = Lll) Go, (lp — all)
WqENp

with W= 3" Go, (I, — Ill) Go (Ilp —all)
qEN,
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where G, (z) = exp(—z?/20?). The values I, and Z,, are the

color intensities in CIE-Lab color space for a pixel p in I and

T, respectively, o2 is the variance typically used in Gaussian

filters and IV, is a square pixel neighborhood centered in p.
Let k be a kernel defined as follows:

k(p,a) = Go (12, — Zy)) -

Figure 10(b) shows the mapping of each pixel in Figure 10(a)
using the kernel defined in Equation (16) with the Kelp tech-
nique. The color assigned to each mapped point is the color
of the corresponding pixel in the original image. Notice that
(Figures 10(c) and 10(d)) that in the mapping produced by
Kelp the yellow background is clearly separated from the
yellow part of the banana. Moreover, user can interactively
define cluster in the projection layout, which is equivalent to
pick out regions in the feature space and back to the original
image, as illustrated in Figures 10(e) and 10(f).

(16)

£ g
'L:if:ilkgﬁﬁ
% '.}\P.o °
c® o @
&

"
T Y

R

Fop .

(b) Kelp projection

(d) Segmented image

(e) 3 clusters

(f) Segmented image
Fig. 10. Image segmentation pipeline.

The image segmentation application describe above
shows that Kelp can, in fact, assist in the construction of
kernels for specific purposes. The kernel defined in Equa-
tion (16) is only one example.

6 DISCUSSION AND LIMITATIONS

Comparisons and results presented in Section 4 clearly show
the effectiveness of Kelp , which presented a good trade-off
between accuracy and computational time. The solid math-
ematical foundation supporting Kelp’s formulation ensures
distance preserving and versatility towards incorporating
user knowledge into the projection process. In fact, among
techniques able to dealing with kernels and that enable
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user intervention, Kelp turned out to be one of the best
alternatives. Simplicity as to computational implementation
is another strength of Kelp, which essentially requires a
numerical eigendecomposition library. The need for kernel
values only between instances and samples is another posi-
tive aspect of Kelp, as storage is pushed down from O(m?)
to O(mn), where n, the number of samples, is much smaller
than m, the number of instances in the whole data set.

Another interesting aspect of our technique is that it is
inherently incremental and parallelizable. Only the left most
term k, in Equation (10) changes when projecting distinct
data instances. Therefore, once the matrix K is built and its
eigendecomposition performed, one can project instances x
independently from each other, that is, the product of the
matrix Y K ATt AT by the vector k, can be done in parallel
for each instance.

Although simple, the application devoted to visualize
neighborhood changes induced by kernels has tuned out
to be quite interesting and it opens a multitude of possible
visualization alternatives. In the provided application we
have just exploited the norm of differential coordinates as a
measure of neighborhood changes, but many other metrics
could also be employed. We are currently investigating more
sophisticated visualization mechanisms towards further un-
derstanding how kernels act on data sets. Moreover, the
other two applications, namely, interactive image segmen-
tation and SVM space visualization, prove that Kelp can
support a variety of applications.

An issue that is not properly related to our formula-
tion but impacts directly on its results is how to set the
parameters that control a kernel. For instance, it is well
known that the parameter o used in Gaussian kernels affects
the result and effectiveness of SVM classifiers and Kernel
PCA dimensionality reduction techniques [1]. Finding the
appropriate value of o to reach the best result is difficult. In
our tests we used the average variance of the data to set o,
but such an automatic mechanism did not work properly for
certain data sets, which demanded a manual fine tune of o.
We believe that Kelp can also be a very useful tool to assist
the task of setting the parameters controlling the behavior
of kernels, being this one interesting aspect to be explored
in a future work.

7 CONCLUSION

In this work we proposed a novel projection technique de-
signed specifically to map kernelized data to a visual space.
Called Kelp, the proposed method has a solid mathematical
foundation and it outperforms state-of-art techniques as
to accuracy and computational times. The potential use of
Kelp to support kernel-based applications with visualiza-
tion resources opens new possibilities which could not be
efficiently addressed until now. Therefore, flexibility, effec-
tiveness, and ease of implementation render Kelp one of
the most attractive multidimensional projection methods for
handling kernelized data.
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