

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

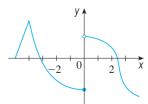
Cálculo Diferencial e Integral — Lista 6 Prof. Adriano Barbosa

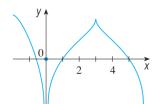
- (1) Encontre a equação da reta tangente as curvas abaixo nos pontos dados: (a) $y=4x-3x^2,$ (2, -4) (b) $y=\sqrt{x},$ (1, 1)
- (2) O deslocamento retilíneo de uma partícula é dado pela equação $s(t)=\frac{1}{t^2}$. Determine a velocidade da partícula nos instantes $t=1,\,t=2$ e t=a com a um número real positivo qualquer.
- (3) Use o gráfico abaixo para estimar o valor das derivadas de f:

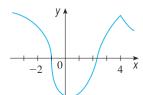
(a)
$$f'(-3)$$

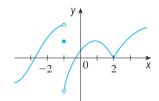
(b)
$$f'(-2)$$

(c)
$$f'(-1)$$


(d)
$$f'(0)$$


(e)
$$f'(1)$$


(f)
$$f'(2)$$


(g)
$$f'(3)$$

- (4) Determine os pontos onde as funções abaixo não são deriváveis.

(5) Use as regras de derivação para calcular a derivada das funções abaixo.

1.
$$f(x) = 2^{40}$$

3.
$$f(t) = 2 - \frac{2}{3}t$$

5.
$$f(x) = x^3 - 4x + 6$$

7.
$$g(x) = x^2(1-2x)$$

9.
$$q(t) = 2t^{-3/4}$$

11.
$$A(s) = -\frac{12}{s^5}$$

13.
$$S(p) = \sqrt{p} - p$$

15.
$$R(a) = (3a + 1)^2$$
 16. $S(R) = 4\pi R^2$

17.
$$y = \frac{x^2 + 4x + 3}{\sqrt{x}}$$
 18. $y = \frac{\sqrt{x} + x}{x^2}$

19.
$$H(x) = (x + x^{-1})^3$$

21.
$$u = \sqrt[5]{t} + 4\sqrt{t^5}$$

2.
$$f(x) = \pi^2$$

4.
$$F(x) = \frac{3}{4}x^8$$

5.
$$f(x) = x^3 - 4x + 6$$
 6. $f(t) = \frac{1}{2}t^6 - 3t^4 + t$

7.
$$g(x) = x^2(1-2x)$$
 8. $h(x) = (x-2)(2x+3)$

10.
$$B(y) = cy^{-6}$$

12.
$$y = x^{5/3} - x^{2/3}$$

13.
$$S(p) = \sqrt{p} - p$$
 14. $y = \sqrt{x}(x - 1)$

16.
$$S(R) = 4\pi R^2$$

18.
$$y = \frac{\sqrt{x} + x}{x^2}$$

20.
$$g(u) = \sqrt{2} u + \sqrt{3u}$$

$$22. \ v = \left(\sqrt{\chi} + \frac{1}{\sqrt[3]{\chi}}\right)^2$$