Material Teórico - Módulo de Introdução à Função Quadrática

Noções Básicas: Definição, Máximos e Mínimos

Nono Ano

Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto

9 de novembro de 2019

1 Forma canônica da função quadrática

Sejam $a,b,c\in\mathbb{R},$ com $a\neq 0.$ Uma função $f:\mathbb{R}\to\mathbb{R},$ dada por

$$f(x) = ax^2 + bx + c, (1)$$

é chamada função quadrática.

Para estudarmos convenientemente a função quadrática f, vamos escrevê-la na forma seguinte:

$$f(x) = ax^2 + bx + c = a\left(x^2 + \frac{bx}{a}\right) + c$$

$$= a\left(x^2 + 2 \cdot x \cdot \frac{b}{2a} + \left(\frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2\right) + c$$

$$= a\left(x + \frac{b}{2a}\right)^2 - a \cdot \left(\frac{b}{2a}\right)^2 + c$$

$$= a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a} + c$$

$$= a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}.$$

(Observe que, do final da primeira linha até a terceira linha, o que fizemos foi *completar quadrados* para escrever $x^2 + \frac{bx}{2}$ como $\left(x + \frac{b}{2}\right)^2$.)

 $x^2 + \frac{bx}{a}$ como $\left(x + \frac{b}{2a}\right)^2$.) A expressão $\Delta = b^2 - 4ac$ (lê-se Delta) é chamada **discriminante** da função quadrática f. Assim, os cálculos acima nos permitem escrever

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a}.$$
 (2)

A expressão do segundo membro acima é chamada de forma canônica da função f.

A forma canônica de uma função quadrática permite que cheguemos a algumas conclusões importantes sobre a função. A primeira dessas conclusões diz respeito ao valor mínimo, ou máximo, que essa função pode assumir.

Como o quadrado de um número real nunca é negativo, temos $\left(x+\frac{b}{2a}\right)^2\geq 0$ para qualquer valor de x, sendo $\left(x+\frac{b}{2a}\right)^2=0$ se, e somente se, $x=-\frac{b}{2a}$. A partir daí, há duas situações possíveis:

(I) Se a > 0, então $a\left(x + \frac{b}{2a}\right)^2 \ge 0$ e

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a} \ge -\frac{\Delta}{4a}.$$

Além disso, a igualdade ocorre na desigualdade acima se, e só se, $x=-\frac{b}{2a}$. Assim, neste caso, o valor **mínimo** da função f é $-\frac{\Delta}{4a}$, e tal valor é atingido somente para $x=-\frac{b}{2a}$.

(II) Se a < 0, então $a\left(x + \frac{b}{2a}\right)^2 \le 0$ e

$$f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a} \le -\frac{\Delta}{4a}.$$

Neste caso, o valor **máximo** da função $f \in \frac{\Delta}{4a}$, sendo atingido somente para $x = -\frac{b}{2a}$.

Ilustramos a discussão acima com o seguinte

Exemplo 1. Escreva cada função $f : \mathbb{R} \to \mathbb{R}$, dada abaixo, na forma canônica. Em cada caso, decida se há máximo ou mínimo e encontre esse valor extremo.

(a)
$$f(x) = x^2 - 6x + 8$$
.

(b)
$$f(x) = -x^2 + x + 1$$
.

(c)
$$f(x) = x^2 - x + \frac{1}{4}$$
.

Solução. Colocaremos as funções na forma canônica completando quadrados.

(a) Procedendo como na dedução de (2), temos

$$f(x) = x^{2} - 6x + 8$$

$$= x^{2} - 2 \cdot x \cdot 3 + 3^{2} - 3^{2} + 8$$

$$= (x - 3)^{2} - 1$$

Como $(x-3)^2 \ge 0$, temos que $f(x) = (x-3)^2 - 1 \ge -1$. Assim, esta função atinge um valor mínimo, igual a -1, atingido somente para x=3.

Outra maneira de resolver o problema é aplicar diretamente os casos (I) ou (II): o coeficiente de x^2 é a=1>0, logo, a função admite um valor mínimo. Esse valor é dado por $-\frac{\Delta}{4a}$ e, como b=-6, c=8, temos

$$-\frac{\Delta}{4a} = -\frac{b^2 - 4ac}{4a} = -\frac{36 - 32}{4} = -1.$$

(b) Imitando novamente os passos que levaram a (2), temos

$$f(x) = -(x^2 - x - 1)$$

$$= -\left(x^2 - 2 \cdot x \cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} - 1\right)$$

$$= -\left(\left(x - \frac{1}{2}\right)^2 - \frac{5}{4}\right).$$

Como $\left(x-\frac{1}{2}\right)^2 \ge 0$, temos que $-\left(x-\frac{1}{2}\right)^2 \le 0$ e $f(x) = -\left(x-\frac{1}{2}\right)^2 + \frac{5}{4} \le \frac{5}{4}$. Assim, esta função assume valor máximo $\frac{5}{4}$, atingido somente para $x = \frac{1}{2}$.

De maneira análoga ao item (a), outra forma de resolver o problema é aplicar o caso (II) da discussão que precede o exemplo: o coeficiente de x^2 é a=-1<0, logo, a função assume um valor máximo, dado por $-\frac{\Delta}{4a}$. Uma vez que b=1 e c=1, temos

$$-\frac{\Delta}{4a} = -\frac{b^2 - 4ac}{4a} = -\frac{1+4}{4(-1)} = \frac{5}{4}.$$

(c) Neste caso, temos diretamente que

$$f(x) = x^2 - x + \frac{1}{4} = \left(x - \frac{1}{2}\right)^2 \ge 0,$$

logo, o valor mínimo da função é 0, atingido quando $x=\frac{1}{2}$.

Uma solução alternativa análoga às dos itens anteriores também funciona: como a = 1 > 0, a função assume o valor mínimo $-\frac{\Delta}{4a} = 0$, pois $\Delta = 0$.

2 Máximos e mínimos

A breve discussão da seção anterior nos permite resolver alguns problemas interessantes, nos quais precisamos encontrar valores máximos ou mínimos de determinadas grandezas, sujeitas a certas restrições. Vejamos um exemplo:

Exemplo 2. Considere dois números reais cuja soma é iqual a 6. Qual é o maior valor que o produto desses dois números pode assumir?

Solução. Sejam $x, y \in \mathbb{R}$ tais que x+y=6. Queremos encontrar o maior valor possível para P=xy. Da igualdade x + y = 6, segue que y = 6 - x. Assim, P = xy = x(6 - x), ou seja, $P = P(x) = -x^2 + 6x$. Como a = -1 < 0, b = 6 e c = 0 para essa função quadrática, pelo caso (II) discutido anteriormente o produto P atinge um valor máximo quando $x=-\frac{b}{2a}=-\frac{6}{2(-1)}=3$. Neste caso, y=6-x=6-3=3 e o produto é $P=xy=3\cdot 3=9$. \square

Observação 3. Outra solução para o Exemplo 2 resulta da designal dade

$$\sqrt{xy} \le \frac{x+y}{2},\tag{3}$$

a qual é válida para quaisquer números reais x, y > 0 e é tal que a igualdade ocorre se, e somente se, x = y.

No Exemplo 2, como x + y = 6, temos

$$xy \le \left(\frac{x+y}{2}\right)^2 = 9,$$

e esse valor máximo é atingido se, e somente se, x = y; $mas\ como\ x + y = 6$, essa condição para a igualdade força que tenhamos x = y = 3.

Para verificarmos a validade de (3), basta notarmos que, para x, y > 0, tem-se $(\sqrt{x} - \sqrt{y})^2 \ge 0$, logo, $x + y \ge 2\sqrt{xy}$. Dividindo por 2, obtemos (3). A igualdade ocorre se, e somente se, $(\sqrt{x} - \sqrt{y})^2 = 0$, isto é, se, e somente se,

A desigualdade (3) pode ser generalizada: se x_1, \ldots, x_n são números reais positivos, então

$$(x_1 \dots x_n)^{1/n} \le \frac{x_1 + \dots + x_n}{n}$$
 (4)

e a igualdade ocorre se, e somente se, $x_1 = \ldots = x_n$.

Vamos demonstrar (4) no caso n = 3, mostrando que, para x, y e z reais não positivos, tem-se sempre

$$(xyz)^{1/3} \le \frac{x+y+z}{3},\tag{5}$$

com igualdade ocorrendo se, e somente se, x = y = z.

Primeiramente, observemos que, para a, b e c reais positivos, temos $(a - b)^2 + (a - c)^2 + (b - c)^2 \ge 0$, pois a expressão do primeiro membro é uma soma de três quadrados de números reais. Desenvolvendo esses quadrados, obtemos

$$a^2 + b^2 + c^2 \ge ab + ac + bc.$$
 (6)

Agora, multiplicando ambos os membros da última desigualdade acima por a + b + c (que é positivo), ficamos

$$(a+b+c)(a^2+b^2+c^2) \ge (a+b+c)(ab+ac+bc).$$

Expandindo os produtos e cancelando a soma $a^2b + a^2c +$ $ab^2 + b^2c + ac^2 + bc^2$ em ambos os membros, obtemos a designaldade $a^3 + b^3 + c^3 \ge 3abc.$

$$a^3 + b^3 + c^3 > 3abc$$
.

Fazendo $a = \sqrt[3]{x}$, $b = \sqrt[3]{y}$ e $c = \sqrt[3]{z}$, obtemos (5).

Por fim, uma rápida inspeção no argumento acima mostra que só teremos igualdade se a tivermos em (6). Mas, uma vez que essa desigualdade equivale a $(a - b)^2 + (a - b)^2$ $(c)^{2} + (b-c)^{2} = 0$, devemos ter a-b=0, a-c=0, b-c=0, isto é, a = b = c. Assim, x = y = z.

Exemplo 4. Calcule o valor máximo possível para xy(15-(x-y), sendo x e y reais positivos.

Solução. Se x e y são tais que 15 - x - y < 0, então o produto xy(15-x-y) é negativo e, neste caso, o produto não é máximo. Assim, vamos considerar x > 0 e y > 0tais que z = 15 - x - y > 0. Queremos encontrar o valor máximo de xyz, sabendo que x + y + z = 15.

Usando (5), obtemos

$$(xyz)^{1/3} \le \frac{x+y+z}{3} = \frac{15}{3} = 5.$$

A igualdade ocorre se, e somente se, x = y = z = 5 e o valor máximo de xy(15-x-y) é $5^3=125$.

Voltemos a aplicar as condições de máximo ou mínimo para uma função quadrática, desta vez em um problema geométrico.

Exemplo 5. Dentre todos os retângulos inscritos em um quarto de círculo, descubra, com justificativa, o que tem área máxima.

Solução. Se um retângulo de base x e altura y está inscrito em um quarto de círculo de raio R, como na Figura 1, então o Teorema de Pitágoras dá a relação

$$x^2 + y^2 = R^2.$$

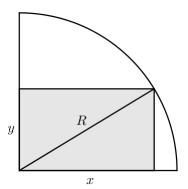


Figura 1: um retângulo inscrito em um quarto de círculo.

Assim, podemos escrever a área do retângulo como

$$A = xy = x\sqrt{R^2 - x^2} = \sqrt{R^2x^2 - x^4}.$$

A área $A(x) = \sqrt{R^2x^2 - x^4}$ será a maior possível quando o radicando $R^2x^2 - x^4$ for máximo. Essa expressão pode ser escrita como $f(t) = R^2t - t^2$, onde $t = x^2$. Assim fazendo, percebemos que a área do retângulo é a raiz quadrada de uma função quadrática f, cuja variável t é quadrado de x.

A função quadrática f realmente admite um valor máximo, pois o coeficiente de t^2 é -1). Por outro lado, esse valor máximo só é atingido quando $t=-\frac{b}{2a}=-\frac{R^2}{2(-1)}=\frac{R^2}{2}$, ou seja, quando $x=\sqrt{t}=\frac{R}{\sqrt{2}}$. Neste caso, $y=\sqrt{R^2-x^2}=\frac{R}{\sqrt{2}}$. Isso significa que a área será máxima quando $x=y=\frac{R}{\sqrt{2}}$, ou seja, quando o retângulo inscrito for um quadrado.

3 Movimento em uma reta com aceleração constante

Considere um ponto material em movimento sobre uma reta. A situação ideal é aquela em que podemos determinar a posição do ponto sobre a reta em qualquer instante $t \ge t_0$, onde t_0 é um instante inicial.

Suponhamos que a posição do ponto material seja dada, no instante t, por uma função quadrática $s(t)=at^2+bt+c$. Nosso objetivo é descrever fisicamente seu movimento ao longo da reta.

Inicialmente, vamos descobrir como calcular a **velocidade** em cada instante t. Tal velocidade instantânea nada mais é do que um número do qual se aproximam as **velocidades médias** em intervalos de tempo muito pequenos, os quais começam ou terminam em t. Mais precisamente, considerando-se o intervalo de tempo de t a $t+\Delta t$, a velocidade média do ponto nesse intervalo é dada, por definição, pela razão

$$\frac{\Delta s}{\Delta t} = \frac{s(t + \Delta t) - s(t)}{\Delta t}.$$
 (7)

Vamos calcular a variação de posição Δs :

$$\Delta s = s(t + \Delta t) - s(t)$$

$$= a(t + \Delta t)^2 + b(t + \Delta t) + c - (at^2 + bt + c)$$

$$= at^2 + 2at\Delta t + a\Delta t^2 + bt + b\Delta t + c - at^2 - bt - c$$

$$= 2at\Delta t + a\Delta t^2 + b\Delta t.$$

Agora, a velocidade média, no intervalo de tempo $[t,t+\Delta t]$, é

$$\frac{\Delta s}{\Delta t} = \frac{2at\Delta t + a\Delta t^2 + b\Delta t}{\Delta t} = 2at + a\Delta t + b.$$

Quando Δt fica muito pequeno, ou seja, próximo de zero, a parcela $a\Delta t$ se torna desprezível e pode ser desconsiderada. Assim, a velocidade do ponto material no instante t é dada por

$$v(t) = 2at + b. (8)$$

Logo, se a posição de um ponto que se move ao longo de uma reta é dada por uma função quadrática do tempo, então sua velocidade é dada por uma função afim do tempo.

Para examinarmos como a velocidade varia, definimos o quociente

$$\frac{\Delta v}{\Delta t} = \frac{v(t + \Delta t) - v(t)}{\Delta t} \tag{9}$$

como a **aceleração média** do ponto no intervalo de tempo de t a $t + \Delta t$. Em nosso caso, temos

$$\Delta v = v(t + \Delta t) - v(t)$$

$$= 2a(t + \Delta t) + b - (2at + b)$$

$$= 2a\Delta t.$$

Portanto, a aceleração média do ponto material é

$$\frac{\Delta v}{\Delta t} = 2a,$$

uma constante.

Assim, concluímos que

Se a posição de um ponto material sobre uma reta for dada por uma função quadrática, então sua aceleração será constante.

Mais ainda, se a aceleração do ponto é dada por A, então 2a=A e $a=\frac{A}{2}$.

Consideremos o instante inicial do movimento como $t_0 = 0$. Neste caso, denotando $v_0 = v(0)$, segue de (8) que $v_0 = v(0) = b$, e a função afim que determina a velocidade em cada instante é dada por

$$v(t) = v_0 + At. (10)$$

Finalmente, se $s_0 = s(0) = c$, então a função que descreve a posição do ponto material em cada instante t, a partir de $t_0 = 0$, é dada por

$$s(t) = s_0 + v_0 t + \frac{A}{2} t^2. (11)$$

Reciprocamente, é possível mostrar a afirmação a seguir:

Se um ponto de movimenta sobre uma reta com aceleração constante A, partindo, em t=0, da posição s_0 com velocidade v_0 então sua posição s=s(t) é dada pela expressão (11).

A demonstração desse fato está além dos objetivos desta aula. Para uma exposição elementar, veja a referência [6].

Exemplo 6. Uma pedra é deixada cair em um poço e demora 2 segundos para chegar ao fundo do poço. Supondo que o movimento da pedra se dá em linha reta e que a aceleração que ela sofre é $g=9,8m/s^2$, calcule a profundidade do poço.

Solução. Como a pedra é deixada cair, a velocidade inicial é $v_0 = 0$. Assim, (11) nos dá $s(t) = s_0 + \frac{g}{2}t^2$. Considerando como posição inicial o ponto de onde se solta a pedra (a "boca" do poço), temos $s_0 = 0$ e s(2) = p, onde p é a profundidade do poço. Logo,

$$p = 0 + \frac{g}{2} \cdot 2^2 = 2g = 19,6 \, m.$$

Dicas para o Professor

O material desta aula pode ser coberto em pelo menos três encontros de 50 minutos cada.

A forma canônica da função quadrática pode ser, num primeiro momento, apresentada sem demonstração. Se os estudantes tiverem experiência com completamento de quadrados, a demonstração pode ser apresentada logo. Caso contrário, é interessante que, primeiramente, sejam resolvidos alguns exemplos onde equações de segundo grau são resolvidas usando-se o método de completamento de quadrados. Uma alternativa efetiva é, antes de discutir o caso geral, apresentar o Exemplo 1, para que os estudantes percebam como o método do completamento de quadrados funciona.

O estudo de máximos e mínimos por métodos elementares abre a perspectiva de que se apliquem desigualdades à resolução de problemas. Tentamos explorar um pouco, no texto, o uso da desigualdade entre as médias aritmética e geométrica, em casos particulares (cf. Observação 3 e Exemplo 4). Você pode fazer isso em sala de aula, enfatizando que existem métodos mais gerais para a solução desses problemas, mas que não são elementares (são aplicações da noção de derivada).

A seção final, sobre movimento retilíneo uniformemente variado, fornece uma aplicação das funções quadráticas que é imediata e de inegável importância.

As sugestões de leitura complementar [1] e [3] trazem mais informações a respeito das funções quadráticas. As sugestões de [2] a [5] são indicadas para quem deseja explorar com maior profundidade o uso de desigualdades na resolução de problemas envolvendo máximos e mínimos.

Sugestões de Leitura Complementar

- E. L. Lima et al. A Matemática do Ensino Médio, volume
 Coleção do Professor de Matemática, Editora S.B.M.,
 Rio de Janeiro, 1998.
- A. Caminha. Tópicos de Matemática Elementar, volume 1, segunda edição. Coleção do Professor de Matemática, Editora S.B.M., Rio de Janeiro, 2013.
- 3. A. Caminha. *Tópicos de Matemática Elementar*, volume 3, segunda edição. Coleção do Professor de Matemática, Editora S.B.M., Rio de Janeiro, 2013.
- I. Niven. Maxima and Minima without Calculus. The Dolciani Mathematical Expositions, 6, MAA, 1981.
- 5. N. D. Kazarinoff. *Geometric Inequalities*. New Mathematical Library, Random House, 1961.
- H. M. Nussenszveig. Curso de Física Básica: Mecânica, volume 1, segunda edição. Edgard Blücher, São Paulo, 2015.